Меню

Давление пара растворов замерзание и кипение растворов законы рауля

Замерзание и кипение растворов

Любая жидкость закипает, когда давление ее пара становится равным атмосферному давлению. Так как, согласно закону Рауля, давление пара над раствором ниже давления пера над чистым растворителем, то для того, чтобы раствор закипел, его надо нагреть до более высокой температуры, чем растворитель.

Замерзает раствор тогда, когда давление насыщенного пара его становится равным давлению насыщенного пара твердого растворителя (льда).

Таким образом, раствор кипит при более высокой температуре, а замерзает при более низкой температуре, чем чистый растворитель.

Повышение температуры кипения (ΔТкип) и понижение температуры замерзания (∆Тзам) раствора прямо пропорционально моляльной концентрации растворенного вещества (следствие закона Рауля):

где ∆Тзам – понижение температуры замерзания; ∆Ткип – повышение температуры кипения; КТ — криоскопическая константа; ЭТ – эбулиоскопическая константа; cm(B) – моляльная концентрация раствора. Заменив в уравнениях cm(B) его выражением по формуле для моляльной концентрации получим:

∆Тзам = ; ∆Ткип =

Источник

Закон Рауля

Для жидкостей, растворимых друг в друге в любых соотношениях, выполняется закон Рауля. Если обозначить давление насыщенного пара растворителя над чистым растворителем через р 0 , а над раствором — через р, то отношение (Р 0 — Р) / Р 0 будет называться относительным понижением давления пара над раствором. Разность (р 0 — р) = Δр называется абсолютным понижением давления пара. Математическим выражением закона Рауля является уравнение (Р 0 — Р) / Р 0 = Х, где Х — мольная доля растворенного вещества.

Итак, закон Рауля показывает, что относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества.

Если речь идет о растворах твердых нелетучих веществ в летучих растворителях, то парциальными давлениями растворенных веществ пренебрегают. Закон Рауля справедлив для растворов неэлектролитов с очень низкой или высокой концентрацией одного из компонентов. В промежуточных концентрациях свойства растворов отклоняются от идеальных, что говорит о наличии взаимодействия между растворителем и растворённым веществом.

Понижение давления насыщенного пара над раствором влияет на температуры кипения и замерзания растворов. Поскольку между молярной долей растворённого вещества и давлением пара над раствором существует прямая зависимость, то понятно, что влияние растворенного вещества на температуры кипения и замерзания растворов также связано с его концентрацией.

Исследуя замерзание и кипение растворов, Рауль установил следующие закономерности:

1) повышение температуры кипения раствора пропорционально количеству молей растворенного вещества при условии, что количество молей растворителя постоянно:

где Е — эбулиоскопическая константа, величина которой имеет вполне определенное значение для каждого растворителя и не зависит от природы растворенного вещества; Сl — моляльная концентрация вещества. Физический смысл эбулиоскопической константы заключается в том, что при Сl = 1 она равна повышению температуры кипения одномоляльного раствора, так как в этом случае Δtкип = Е

2) понижение температуры замерзания раствора пропорционально числу молей растворенного вещества при постоянном количестве растворителя:

где К — криоскопическая константа, величина которой не зависит от природы растворенного вещества, а зависит только от природы растворителя.

Итак, некоторые физические свойства разбавленных растворов (давление паров над раствором, температуры кипения и замерзания) зависят от концентрации и не зависят от природы растворенных веществ в растворе. Поэтому эти свойства называются коллигативными (от лат. colligatus_собирать).

Осмос

При изучении свойств растворов широко применяют полупроницаемые перегородки —мембраны, характерной особенностью которых является их способность пропускать молекулы растворителя, но задерживать частицы растворенного вещества. (рис. 3).

Читайте также:  Что делать если очень сильно болит голова низкое давление

Явление массопереноса растворителя через полупроницаемую мембрану, сквозь которую могут просачиваться малые молекулы, но не способны проходить большие молекулы из разбавленного раствора в раствор более высокой концентрации, называется осмосом.

Давление, которое необходимо создать с той стороны мембраны, где находится раствор, чтобы приостановить осмос, называется осмотическим давлением. Изучение явления осмоса позволило Вант-Гоффу вывести уравнение, в котором показана зависимость осмотического давления (растворов неэлектролитов) от концентрации: осмотическое давление равно тому давлению, которое производило бы растворенное вещество, если бы оно в виде идеального газа занимало тот же объем при той же температуре:

где π — осмотическое давление раствора, Па; С — концентрация в моль/л; R —универсальная газовая постоянная; Т — абсолютная температура.

Рис.3. Прибор для демонстрации осмоса: 1 — раствор; 2 — растворитель; 3 — полупроницаемая мембрана

Молярная концентрация раствора определяется по формуле

где m — масса растворенного вещества; M — молярная масса вещества; V — объем раствора. Подставляя это выражение в уравнение Вант-Гоффа, получим

Описанные коллигативные свойства (повышение температуры кипения растворов, понижение температуры замерзания, осмотическое давление) относятся к бесконечно разбавленным растворам неэлектролитов.

Введение в раствор электролитов (солей, кислот и оснований) также влияет на коллигативные свойства растворов, однако в этом случае имеются некоторые особенности, связанные с природой самих электролитов. Так, если в воде растворить 1 моль NaCl, то в результате распада молекулы на ионы в растворе появляются 2 моль ионов (1 моль Na + и 1 моль С1-), а каждый из этих ионов оказывает свое независимое действие на раствор. Следует ожидать, что в водных растворах NaCl (и подобных ему молекул) коллигативные свойства будут проявляться вдвое сильнее, чем, например, у раствора сахара в воде. Это предположение подтверждено экспериментально. Так, понижение температуры замерзания раствора, содержащего 1 г NaCl в 100 г воды, почти вдвое больше Δtзам , рассчитанной по закону Рауля.

Аномальное воздействие ионных соединений на коллигативные свойства растворов становится все более выраженным при больших ионных зарядах. Чтобы последнее уравнение было применимо для определения осмотического давления растворов, Вант-Гофф ввел в него поправочный коэффициент i (изотонический коэффициент), который, по существу, указывает эффективное число ионных или молекулярных частиц, образующихся из одного моля растворенного вещества. Поэтому уравнение принимает вид P = 1000i (m / MV) RT

Многие биологические процессы, протекающие в растительном и животном организме, связаны с осмосом благодаря наличию в них так называемых биологических мембран. Оболочки клеток представляют собой мембраны, которые проницаемы для воды, по не пропускают вещества, растворенные во внутриклеточной жидкости. Внутренняя среда клетки отличается от внешней по вязкости, химическому составу, содержанию ионов и т. д. Наружная мембрана ограничивает внутреннюю среду от внешней и поддерживает эти различия на протяжении всей жизни клетки. Изменение химического состава окружающей клетку среды приводит к изменению осмотического давления, с чем связаны такие важные биологические процессы, как тургор, плазмолиз и гемолиз.

Не обладая способностью насасывать или откачивать воду непосредственно, клетки регулируют приток и отток воды, изменяя концентрацию находящихся в них растворенных веществ. Чтобы поглотить больше воды, клетка поглощает больше ионов различных солей, молекул глюкозы или других растворимых соединений. В результате в клетке повышается концентрация растворенных частиц. Вода по законам осмоса начинает поступать в клетку, стремясь к выравниванию своей собственной концентрации по обе стороны мембраны.

Читайте также:  Настройка реле регулятора давления воды

Так работает эта система до тех пор, пока концентрация растворенных веществ вне клетки и в клетке примерно одинакова. Если в среде концентрация растворенных веществ выше, чем в самой клетке, или если средой для клетки служит практически сухой воздух, то клетка теряет воду и сморщивается, как это бывает, когда растения привядают в сухой жаркий день. С оттоком воды содержимое клетки сжимается и отходит от клеточных стенок (рис. 1).

Рис. 1. Тургор и завядание у растений.

А. Растительные клетки, окруженные разбавленным раствором, поглощают воду путем осмоса через клеточную мембрану и остаются тургесцентными. Б. Растительные клетки, окруженные концентрированным раствором, теряют воду вследствие осмоса, и растение завядает.

Если, однако, увядшее растение поместить в воду, то вода вновь поступает в клетки. Они становятся тургесцентными, т.е. набухают от воды и снова прижимаются к клеточным стенкам, подчиняясь тургорному давлению, направленному изнутри наружу. Клеточные стенки способны растягиваться лишь до известного предела, после которого они начинают оказывать противодавление, вытесняющее воду из клеток с такой же скоростью, с какой она в них поступает. Таким способом клеточные стенки защищают клетки: не дают им лопнуть под напором избытка воды.

Многие животные клетки, если поместить их в чистую воду или в очень разбавленный раствор, лопаются, потому что у них нет клеточных стенок (рис. 2).

Рис. 2. Осмос в животной клетке.

Источник

Давление насыщенного пара над раствором. I закон Рауля

Свойства растворов неэлектролитов

В результате естественного процесса испарения над жидкостью образуется пар, давление которого можно измерить с помощью манометра (рис. 8.1). Эндотермический процесс испарения обратим; одновременно с ним протекает экзотермический процесс конденсации:

При равновесии (∆G=0) Vисп=Vконд. Каждый раствор находится в равновесии с его насыщенным паром. Давление насыщенного пара каждого вещества есть величина постоянная при данной температуре, с повышением температуры давление пара увеличивается.

Давление насыщенного пара жидкости определяется числом молекул жидкости, отрывающихся с ее поверхности за единицу времени.

Рассмотрим пример (рис.8.2). В первом сосуде у нас находится чистая вода, во втором – раствор сахара в воде (раствор неэлектролита; сахар — нелетучее вещество и при данных условиях не испаряется).

N1=1 P0 P0>P

При образовании раствора концентрация растворителя уменьшается, его мольная доля становится меньше единицы (N1

Таким образом, над раствором давление насыщенного пара растворителя (Р) всегда меньше, чем над чистым растворителем (Р0): Р

,

где N1 – мольная доля растворителя.

Т.е. давление насыщенного пара над раствором равно его давлению над чистым растворителем, умноженному на мольную долю растворителя.

Кипение и замерзание растворов неэлектролитов. II закон Рауля.

Следствием понижения давления насыщенного пара растворителя над раствором будет:

· понижение температуры замерзания раствора;

· повышение температуры кипения раствора.

Рассмотрим диаграмму состояния воды и раствора неэлектролита. На рис.8.3 схематически изображена зависимость равновесного давления водяного пара от температуры над чистой водой и раствором.

При температуре кипения давление пара равно внешнему давлению, при температуре замерзания давление пара над веществом в жидком и твердом состояниях одинаково.

Линия АО — кривая сублимации — характеризует давление насыщенного водяного пара надо льдом, ОВ – кривая плавления или кристаллизации воды; ОС – кривая испарения или конденсации воды.

Читайте также:  Что делать если у ребенка скачущее давление

В точке О сосуществуют все три фазы воды: жидкость, пар, лед.

Линия О′С′ – кривая испарения или конденсации раствора; О′В′ – кривая плавления или кристаллизации раствора. Обозначение: t1 — температура замерзания (кристаллизации) раствора при 760 мм рт. ст.– точка В′;

t2 — температура замерзания чистой воды (0°С при 760 мм рт. ст.) – точка В; t3 — температура кипения чистой воды (100°С при 760 мм рт. ст.) – точка С; t4 — температура кипения раствора – точка С′.

Поскольку давление насыщенного пара воды над раствором будет ниже, чем над чистой водой, то изменение его давления будет характеризоваться кривой О′С′, все точки которой располагаются ниже соответствующих точек кривой ОС для чистого растворителя, т.е. кривая кипения для раствора лежит ниже, чем для чистой воды. Из рис. 8.3 видно, что при 100°С давление насыщенного пара воды над раствором меньше атмосферного давления (точка Д), поэтому при данной температуре раствор не закипает. Равенство давлений достигается в точке С′ при температуре t­4. При переходе от воды к раствору изменяется также положение кривой плавления. И кривая кипения, и кривая плавления раствора расположены тем дальше от соответствующих кривых воды, чем концентрированнее раствор.

∆tкип = t4 – t3 = (tкип.р-ра – tкип.р-ля) – повышение температуры кипения раствора по сравнению с температурой кипения растворителя.

∆tзам = t2 – t1 = (tзам.р-ля – tзам.р-ра) – понижение температуры замерзания (кристаллизации) раствора по сравнению с температурой замерзания растворителя.

Зависимость ∆tкип и ∆tзам от концентрации растворов определяется вторым законом Рауля:

повышение температуры кипения и понижение температуры замерзания растворов пропорциональны моляльной концентрации растворенного вещества, т.е.

где Кэб – коэффициент пропорциональности, называемый эбуллиоскопической постоянной растворителя; Ккр – криоскопическая постоянная растворителя; Сm – моляльная концентрация растворенного вещества, моль/кг. Физический смысл Кэб и Ккр: если Сm= 1 моль/кг, то ∆tзам= Ккр, т.е. Ккр – понижение tзам раствора, моляльность которого равна 1 моль/кг; ∆tкип= Кэб, т.е. Кэб – повышение tкип раствора, моляльность которого равна 1 моль/кг.

Кэб, Ккр – характеристики растворителя, не раствора, зависят от природы растворителя (справочные величины). Например,

для воды: для бензола:

Для одномоляльных растворов различных неэлектролитов независимо от их состава температура кипения данного растворителя повышается на одну и ту же величину, а температура замерзания – понижается на одну и ту же величину. Так, температура кипения различных по составу одномоляльных водных растворов увеличивается на 0,52°С, а температура замерзания понижается на 1,86°С.

Этот закон показывает, что свойства растворов зависят только от числа частиц растворенного вещества, но не от их размеров, природы и т.д.

Измерение понижения температуры кристаллизации раствора по сравнению с температурой кристаллизации чистого растворителя называют криоскопией. Измерение повышения температуры кипения раствора по сравнению с температурой кипения чистого растворителя называют эбуллиоскопией.

Методами криоскопии и эбуллиоскопии определяют относительные молекулярные массы растворенного неэлектролита. Для этого подставим в уравнение второго закона Рауля «развернутую» формулу для расчета моляльной концентрации растворенного вещества В

=,

∆tкип = Кэб ·,

∆tзам = Ккр ·.

;

,

где МВ— молярная масса растворенного неэлектролита В, численно равная его относительной молекулярной массе, mB – масса неэлектролита В, г; mр-ля – масса растворителя, кг.

Источник